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Abstract 

The primary goal of this project was to create a recommender system that takes the name 

of a book the user enjoyed as its input and returns the title of a different book that the user will 

likely also enjoy. A recommender system is an information filtering program that is used to 

predict how a user would score an item or service they have not yet seen. In terms of this project, 

a predictive model was created that uses the book entered by the user to forecast whether a user 

would rate other books in the system highly (a rating of 4 or 5) or poorly (a rating of 1, 2, or 3). 

The model then returns the title with the highest predicted rating. When making predictions, the 

recommender system draws from a data set containing the ratings of 10,000 books by 53,424 

distinct users. Challenges faced during system construction included determining the best data 

mining technique to use when building the model, time constraints due to a large data set and 

unoptimized code, and limitations when determining the accuracy. The highest accuracy 

achieved by the recommendation system was 77.67% using the optimized Link Rating Classifier.  

 

Introduction 

Recommender systems have their origins in the early 1990s. The first recommender 

system, Tapestry, was introduced in 1992.1 Tapestry was designed to recommend content from 

various news organizations. It was built around the idea of using social collaboration to sort 

through large numbers of documents.2 This was the first time that the term “collaborative 
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filtering” was introduced as a way to describe using feedback from multiple users to make 

predictions.2 Over the last two decades, recommender systems have become integral parts of 

many systems. They are used by major companies such as Netflix, Google, Twitter, Amazon, 

and LinkedIn to connect users with products, services, and other users that may be of interest to 

them.1 Recommender systems are so prevalent because they provide personalized results based 

on the user’s preferences or characteristics.3 This targeted nature is highly valuable to companies 

that are looking to efficiently market their products, such as Amazon, or create personalized user 

experiences, such as Netflix. Recommender systems can be built based on several different kinds 

of algorithms. Algorithms that are content-based recommend products or services that are similar 

to ones that a user has previously liked.4 Clustering algorithms recommend things that go well 

together regardless of the user’s preferences. Products and services can also be recommended to 

a user based on the feedback from many other users through collaborative filtering algorithms.4 

Collaborative filtering algorithms can be broken down even further to item-centric or 

user-centric and model-based or memory-based. Item-centric collaborative filtering looks to find 

similarities between items in order to determine which products or services to recommend to a 

user. User-centric algorithms focus on finding similarities between users and then recommends 

items to the target user based on what those similar users enjoyed.5 Another distinction in 

collaborative filtering algorithms can be made between algorithms that are based on memory and 

algorithms that are based on models. Memory-based collaborative filtering uses all of the data to 

make every prediction.5  These algorithms are simple to implement, easy to update, and generally 

result in quality predictions, but because they require the entire data set to make predictions, they 

need significant memory and are very slow.  Model-based algorithms, on the other hand, use the 
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data to train a model and then use the model to make predictions.5 These algorithms are generally 

smaller in size than the data set and can therefore be faster to implement than memory-based 

filtering. They do have their disadvantages, however, as it is more difficult to update the model 

to include new data after it has been trained and the quality of predictions can vary based on the 

kind of model that is selected.5   

 

Data Overview 

The recommender system was built using a Github sourced Goodreads data file that 

describes 10,000 books and users’ ratings. The file includes two excel sheets, books.csv and 

ratings.csv. The books.csv sheet contains 10,000 rows of data with each row corresponding to a 

unique book. It has 23 attributes, including book id, book title, rating count and average rating. 

The average rating of the 10,000 books is 4.002 out of 5. There is an average of 54,001 ratings 

per book with a median of 21,155 ratings per book. Having a mean that is significantly larger 

than the median suggests that there are books at the top of the list that were rated significantly 

more times than other books in the data set. 

The second excel sheet (ratings.csv) contains user ratings for the books in books.csv. The 

ratings sheet consists of 3 attributes and has 5,976,479 rows. Each row corresponds to a user id, a 

book id and a rating. The number of unique user ids recorded in this table is 53,424 and each 

user rated an average of over 100 books. The possible ratings values are 1, 2, 3, 4, and 5 with 1 

being the lowest and 5 being the highest.  
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Figure 1: The number of instances for each rating value 

As shown in Figure 1, almost 70% of the total number of ratings is a 4 or 5 rating. This is likely 

due to the fact that the books used in this data set are mostly commonly rated books on 

Goodreads, such as the The Hunger Games series and the Harry Potter series. From the 

ratings.csv, the average rating for all records is 3.92. This is roughly the same as the average 

rating from books.csv. The books.csv file sums to over 500 million ratings, so the ratings 

contained in the ratings.csv file is roughly 1% of that. Because the average ratings of the two 

files were so close, we were comfortable assessing that the ratings.csv file was representative of 

the larger data trends and using it to build our recommender system.  

 

Methods 

Item-centric, memory-based collaborative filtering was the primary method used to 

generate ratings for our book recommender system. Memory-based collaborative filtering is 

more applicable to the recommender system in this context because (1) newly inputted data is 

easier to incorporate and (2) the given data sets lack information required for model-based 

collaborative filtering. Training a model would have been difficult to implement in this system 
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because it requires details such as book genres, themes, frequently used words, and other 

attributes that are not readily available in the data set. Model-based collaborative filtering also 

has a tendency to be overspecialized, meaning the recommender system would have solely look 

at books with similar attributes, resulting in a lack of variety in the outputs. It is not uncommon 

for users to express interest in a diverse collection of literature, which furthers memory-based 

collaborative modeling as the optimal method.  

Similarly, item-centric collaborative filtering was favored over user-centric collaborative 

filtering due to the lack of available data attributes. User-based collaborative filtering requires 

information about the users, such as demographic and book genre preferences, that was not 

included in the dataset. This meant that the program had to rely on the book attributes to make 

predictions. The system works by prompting the user to enter a single book that they have 

previously read and enjoyed and then outputs a different book that they will likely enjoy reading. 

After the initial book is entered into the program, it is linked to other books that have been rated 

by other users who also enjoyed the input book. The program output is the most highly rated of 

these linked books. 

This is item-centric filtering. The program looks for similarly rated books instead of users 

with similar demographics or interests. Although the use of item-based filtering was necessary 

due to the lack of data regarding the users, it also had the added benefit of allowing the user to 

select the book they wanted their recommendation to be based off of. This creates an additional 

layer of personalization within our system so that users can get recommendations for different 

kinds of books depending on what they feel like reading at the moment.  
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Classification, regression, and clustering failed to operate as functional predictive models 

for the book recommender. Regression was immediately ruled out because the given data cannot 

be evaluated to fit in a numerical or continuous model. Clustering is insufficient because there 

are no clear, established correlations that can be grouped together before evaluation. 

Classification most lined up with the given task, for the recommender is predicting whether or 

not a user would enjoy a given book, however, the ratings are not objective which makes 

classification difficult. Therefore, collaborative filtering was established as the best predictive 

model for the book recommender.  

The original data set contained 10,000 books and 5,976,479 ratings. For the creation of 

the recommender system, the data set was limited to the 100 books with the most ratings. This 

was done because the original data set took too long to run code on due to its large size. This 

means that the recommender system is only concerned with calculating the link ratings between 

these 100 books and that the input and output values for the system has to be in this subset. The 

most popular books were selected instead of choosing random titles because we wanted to try to 

maximize the number of common users between the books. Common users were more likely to 

appear in books that had been rated frequently than between books that had only been rated 

occasionally.  

Every pair of books within the training set was given a similarity value. The value, 

termed a “link rating”, was calculated based on user ratings within the dataset. The calculation 

started by identifying all of the users that rated the first book a 4 or a 5. Of that group of users, all 

of the people that also rated the second book were then identified. The average rating for the 

second book was calculated from this subset of users. This result is the link rating from the first 
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book to the second book. It is a measure of how users who enjoyed the first book viewed the 

second book; in other words, it is an indirect measure of the similarity between the two books. It 

should be noted that the link rating values are directional. The value from the first book to the 

second book may not be the same as the value from the second book to the first book. 

The link rating calculation required the creation of a threshold value. The threshold was 

included in order to prevent books that had high link ratings but few common users rating them 

from being recommended over books with lower link ratings but a large number of common 

users. The concern was that link ratings stemming from a smaller number of users would not be 

as accurate predictors of whether a book will be enjoyed as link ratings based on a large set of 

common users. For example, if Book A had an average rating of 5.0 based on 2 ratings and Book 

B had an average rating of 4.5 based on 50 ratings, the average rating of Book B is much more 

likely to be indicative of how a user will rate it since it is less susceptible to atypical opinions 

(outliers). The threshold helped address this concern by setting a lower limit to the number of 

common users a pair of books had to share in order to be considered for recommendation. The 

threshold value was set at the beginning of the system construction before the link values were 

calculated. After the link values had been computed, all of the links that contained fewer 

common users than the threshold were removed from consideration for recommendation. The 

link value calculation and threshold pruning was performed on the entire training set before any 

user inputs were allowed.  

On very large data sets, tests are generally invulnerable to noise and outliers. Because of 

this, overfitting and overly optimistic results were unlikely. Regardless, precautions, such as 

using independent test sets and performing k-fold cross validations, were taken. Training and 
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testing data were kept separate to ensure that the model had not previously encountered the data 

that the results were based upon. When the recommender system was built, the test set was 

separated from the training set prior to system construction. This restricted the results from 

becoming overly optimistic. The size of the test and training sets varied as we evaluated several 

different data splits including 50:50, 75:25, and 90:10 training set to test set ratios. K-fold cross 

validation with 2, 4, and 10 folds were used to protect against overfitting. By comparing the 

performance between the different values of k, it was evident that there were no significant 

differences between 2, 4, or 10 folds, indicating that the large size of the data set meant that there 

was a sufficient amount of data to train on, even when using 2-fold cross validation, to avoid 

overfitting.  

The code itself was entirely done in Python, using the csv, time, and random libraries. 

The majority of the code consisted of 3 main tasks: preprocessing data, recommender system, 

and k-fold cross validation. To begin, we processed the files “ratings.txt” (from ratings.csv) and 

“nameToID.txt” (from books.csv), and output 3 arrays:  

1. A list containing all the user_ids, in order ascending order 

2. A list of lists, with each subarray containing all the user_ids that rated the book_id 

corresponding to the index >=4 

3. A list of lists, with each subarray containing every book_id that a user rated and its 

corresponding rating 

Using these 3 arrays, we were able to build the recommender system, which worked like this: 

(keep in mind that booklist is an initially empty array containing, with entries appended to it for 
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every new book in this format: booklist=[([book_id, ratings, high ratings]), ([...]) , … ]) 

Convert input string to valid book_id ##uses nameToID.txt 
For every user_id that rated the input book >=4: ##uses list 2 

For every book_id that this user_id rated: ##uses list 1 and list 3 
If this book_id is in booklist: 

common ratings+=1 for this book_id 
If this user_id rated this book_id >=4: 

high ratings+=1 for this book_id 
Else: 

If this user_id rated this book_id >=4: 
booklist.append([book_id, 1, 1]) 

Else: 
booklist.append([book_id, 1, 0]) 

 
Using booklist, return the book_id with the highest link rating score (high ratings/common 
ratings) that has common ratings>threshold 
 

The recommender system part of our code enabled us to input a string containing the 

name of any book, and return a valid book_id or book name representing the recommended 

book. We later came to realize that performing this code on our large dataset was very 

inefficient, especially as the size of the “training” data increased (thereby increasing the size of 

list 1 and list 3). There were also some special cases which we had to take into account, 

including the case where no book had a common rating score which exceeded the threshold or 

the case where there were no entries in booklist, meaning that there are no common ratings at all. 

To ensure that the performance of our k-fold cross validation would not be affected for both of 

these rare cases, we would return recommended book_id = 0, which is not a valid book_id. 
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Figure 2: A example of one recommended book 

Finally, in order to evaluate the performance of our recommender system, we performed 

k-fold cross validation tests. First, we shuffled the data set to ensure that data was evenly 

distributed. For each fold, we created a new array mapping every book to its recommended book 

using the “training” portion of our data to create the 3 arrays. After creating the mapping, we 

went through every single user in the test set, and every single book that that user rated. 

Performance was evaluated using the following guidelines:  

If this user rated this book >=4 and rated the recommended book >=4: 
- True Positives +=1 

If this user rated this book >=4 and rated the recommended book <4: 
- False Positives +=1 

If this user rated this book <4 and rated the recommended book >=4: 
- False Negatives +=1 

If this user rated this book <4 and rated the recommended book <4: 
- True Negatives +=1 

If the user did not rate the recommended book: 
- Nothing happens 

The accuracy for this fold is: 
ccuracy A =  T rue P ositives+T rue Negatives

T rue P ositives + F alse P ositives + F alse Negatives + T rue Negatives  

By repeating this process using different splits of the initial dataset (which creates different 

mappings), obtained an accuracy for each fold, and the final accuracy was the average among all 

folds.  
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We called the total number of recommended books that the user also rated the Common 

Ratings, (True Positives+False Positives+False Negatives+True Negatives). Because we don’t 

take into account that a given user did not rate the recommended book at all, we also included 

the Common Ratings Percentage metric, , which indicated the percentage ofT otal Ratings
Common Ratings  

recommended books that the user also rated. In general, a user is more likely to read and give a 

rating to a book that they liked rather than a book that they disliked, and therefore we thought 

that this would be appropriate as another evaluator of performance. We also kept track of 

Precision, , which is a measure of the proportion of books our modelT rue P ositives
T rue P ositives + F alse P ositives  

recommended that were actually highly rated, and Recall, , which is aT rue P ositives
T rue P ositives + F alse Negatives  

measure of the ability to identify all the users that actually enjoyed the input book if they enjoyed 

the recommended book.  

Our recommendation system is based on positive reinforcement. This means that our 

system was coded with the assumption that the user enjoys the input book, and outputs a 

recommended book that we expect the user to also enjoy, as opposed to taking in a book that the 

user did not enjoy and outputting a book that the user should stay away from. As a result, we 

expect our number of true positives and false negatives to be high. We suspect that accuracy, 

precision, and the common ratings percentage would be the best metrics to evaluate the 

performance. Accuracy gives a comprehensive performance for our data, as it takes into account 

all four metrics: true positive, true negative, false positive, and false negative. Precision gives a 

better evaluation of the performance of our recommendation system, since we based it on 

positive reinforcement. The common ratings percentage tells us the likelihood that a user has 

also rated any given recommended book. 
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Results 

As previously noted, there is a threshold for the minimum number of common ratings a 

book needs to be considered for recommendation. We tested 3 arbitrary values (50, 100, 150), to 

see if these thresholds had any significant impact on the accuracy of the recommender system. 

On each threshold value we ran 2-fold, 4-fold, and 10-fold cross validation tests. The overall 

results are summarized in Figure 3 below. 

 
Figure 3: The overall results for 2-fold, 4-fold, and 10-fold cross validation 

 
 

Figure 3 displays the averages of the results for the three cross validation tests on the 

three threshold values. Although these averages incorporated different threshold values and cross 

validation tests, the results from each individual analysis were similar enough that the overall 

averages still provide a complete picture of the recommender system results. The standard 

deviation of the overall average accuracy was 0.02923 which illustrates the results’ close 

grouping. 

The breakdown of the cross validation results for a threshold of 50 are given below in Figure 4: 
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Figure 4: The results for each cross validation with threshold = 50 

The average accuracy was about 0.7417. This percentage did not change drastically as the 

number of folds increased. The number of false negatives (users rating the recommended book 

highly, but rated the inputted book poorly) is 4 times the number of false positives. This could 

potentially mean that the recommendation system was not working, but given the high number of 

true positives (user rated both the input and output books highly), this does not seem likely. After 

noting a similar pattern in the results for the 100 and 150 thresholds (Figure 5 and Figure 6) it 

was hypothesized that the recommender system was favoring books with high average ratings.  
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Figure 5: The results for each cross validation with threshold = 100 

 

Figure 6: The results for each cross validation with threshold = 150 
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As with the threshold of 50, there was no significant change in either the accuracy or the 

number of common ratings across all 3 different cross validations for either of these threshold 

values (Appendices 1, 2, 3, 4). The precision was significantly higher than the accuracy and the 

recall, mainly because the number of true positives was high, as was predicted.  

Since our system is based on commonly highly rated books, it naturally favors the books 

with the most ratings in general, since they typically also have a high average rating. This means 

that for any given book, the system will likely recommend one of the most highly-rated books, 

most notably Harry Potter and the Deathly Hallows, which was the highest rated book among 

the first 100, with an average rating of 4.61. This resulted in a high number of false negatives 

(user gave input book a low rating, but gave the recommended book a high rating), as indicated 

by the results, and thus a lower accuracy. 

To test the hypothesis that our recommender system was favoring popular books with a 

high average rating, we compared the results of only recommending Harry Potter and the 

Deathly Hallows, the book with the highest average rating among the 100 most popular books, to 

those of our recommender system. The theory was tested using a modified version of a ZeroR 

classifier. Unsurprisingly, among the first 100 books, the most commonly recommended book 

was book_id = 25, Harry Potter and the Deathly Hallows. Rather than using the recommender 

system for testing, we would instead always recommend this book, regardless of what title the 

user input. The results of this provided some baseline statistics for which we could evaluate the 

performance of the various classifiers. 
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Figure 7: The results for Pseudo ZeroR Classifier 

Interestingly, the performance of our Pseudo ZeroR Classifier was only slightly worse 

than our average, and our precision even went up very slightly. We also decided to only use 

2-fold cross validation from now on, since we did not find any significant differences between 

evaluating our system at different folds, and the 2-fold cross validation had the lowest running 

time out of the three validation tests. 

In the beginning, we chose the values of 50, 100, and 150 for the threshold arbitrarily. 

After using those values in the initial testing, we chose to optimize our system to find the best 

value(s) for this threshold. To do this, we performed a 2-fold cross validation on every threshold 

from 0 to 2900 in intervals of 100 and compared the accuracy, precision, recall, and common 

ratings percentage for all of them. We chose an upper bound of 2900 after running the program 

several times and noticing that very few books had over 2900 common ratings with another 

book. The results are given in Appendix 5 and charted in Figure 8. 
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Figure 8: The results for each Threshold from 0 to 2900 

Interestingly, the results indicated that the higher thresholds resulted in higher accuracies, 

but also that the higher thresholds resulted in lower common ratings percentages. This was due to 

the way we coded our system: for the case that there were no books above the threshold, our 

system returned book_id = 0, which is not an id value associated with any book. When we 

evaluated our data, this meant that we would not take into account this recommendation at all, 

since it was impossible that a user rated a book which does not exist. As we increase our 

threshold, the chance that we recommend a give book with book_id = 0 increases, meaning that 

while we are giving highly accurate results, these results are from a very small pool, and for most 

of the 100 books, we are giving recommendations to a book that does not exist. This is not 

optimal. In order to find the “Optimal Threshold”, we decided to find the threshold which gave 
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the highest accuracy without sacrificing common ratings percentage, in other words, the highest 

accuracy given before common ratings percentage began decreasing below the threshold = 0 

baseline. This value was determined to be 1800. The results for this threshold are summarized 

below.  

 

Figure 9: The results of the Link Rating Classifier with threshold = 1800 

A threshold of 1800 gave slightly higher values in almost every single metric except 

precision when compared to the baseline Pseudo ZeroR. We suspect that this is because the 

threshold was so high that the system ignored some books with very high link ratings. 

Because we noticed that higher thresholds resulted in higher accuracies, we decided to try 

a recommendation system that would return the book with the maximum number of high (>=4) 

common ratings, rather than the maximum link rating. The results of this system are given in 

Figure 10. 
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Figure 10: The result of maximum number of high(>=4) common ratings 

This change to the recommender system output surprisingly good results. Compared to 

the ZeroR, the output included a much better accuracy, common ratings percentage, and recall 

rate, while only giving a slightly worse precision rate. This is because we are maximizing the 

common high rating and therefore ignoring books with a high percentage of common high 

ratings but low numbers of ratings in general. Compared to the Optimal Link Rating, the output 

included slightly lower values of accuracy, recall rate, and precision rate, but a much higher 

common ratings percentage. This was also to be expected, as this classifier is highly biased 

towards the books with the highest number of ratings. This classifier shows the advantage of our 

Link Rating classifier, as it is less biased towards the most popular popular books, maximizing 

the link rating rather than the number of high common ratings.  
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Comparison of the performances of various classifiers across several metrics 

 

Figure 11: The comparison of the performances of different classifiers across several metrics 

Examining the final results, we observe that although our baseline classifier, the Pseudo 

ZeroR, generally performed the worst, it still had the highest precision with about 93.5%. This 

was logical because our Pseudo ZeroR always recommended the highest rated book, meaning 

that it would give a large number of true positives and a small number of false positives. The 

best performing classifier in terms of accuracy was the Optimized Link Rating, with an accuracy 

of 77.6746%. However, it is also useful to note that the Common High Rating classifier 

performed much better than all others in terms of the common rating percentage, despite giving 

lower performance values in other metrics. 
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Conclusion 

 The highest accuracy obtained among the recommender systems was 77.67%, given by 

the optimal Link Rating Classifier at a threshold of 1800. We expected the recommender system 

to be more biased towards popular and highly rated books. We did not expect, however, that this 

bias would be by such a large margin that classifying every book using that most frequently 

recommended book would give only a slightly worse result.  

There were limitations of both the dataset and the inefficiency of the recommender 

system. The data set was very skewed – the most popular books had significantly more ratings 

and higher averages than the other books. Using only the first 100 books included close to a 

million ratings, which took a long time for the program to preprocess the data and calculate the 

link ratings. This resulted in a shorter amount of time to be spent testing and improving our code.  

We were able to optimize the code to some extent, improving the run time from several 

minutes to several seconds. However, the final version of the code we had still took around 90 

minutes to do a 10-fold cross validation over the 1 million ratings. Due to this inefficiency, we 

could only run our training and testing on the first 100 books out of the entire 10,000 book data 

set, which we suspect impacted on our accuracy.  

Although we were able to construct a successful recommender system that can identify a 

book a user will like with an accuracy of 77.67%, there were several areas of this project that 

could be expanded or improved upon in the future. The code could be further optimized to 

decrease the running time, which would allow for more data to be incorporated in the system and 

more tests to assess the results. The accuracy of the recommender system could likely be 

improved if the link rating values were normalized to account for the popularity of the book, 
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which could decrease the number of false positives output as recommendations. Another possible 

improvement includes creating a link rating model that adjusts the threshold value based on the 

size data set, rather than testing on flat threshold values. This would allow the system to scale to 

different sized data sets without requiring a manual determination and input of the best threshold 

value.  

An area for expansion of this project would be to allow users to input ratings for books 

they have already read into the data set. This new data would then be used to update the 

recommender system. Another feature could be added to allow users to skip through 

recommendations or get multiple book suggestions at once. In terms of the system itself, one 

area of extension would be to incorporate user modeling as a way to improve the results. This 

was not feasible based on the current data set, but obtaining additional information about the 

users’ demographics and preferences would allow for implementation of user-based 

collaborative filtering, which would further refine the system’s predictions. 

 

 

References 

1. Alencar, P., Cowan, D., & Portugal, I. (n.d.). The Use of Machine Learning Algorithms in 
Recommender Systems: A Systematic Review. Waterloo, Canada: University of Waterloo.  

2. Rodriguez, D. (2013). Recommender Systems. Windsor: University of Alcala.  
3. Lu, J., Mao, M., Wang, W., Wu, D., Zhang, G. (n.d.). Recommender System Application 

Developments: A Survey. Sydney, Australia: University of Technology. 
4. How Do Recommendation Engines Work? And What are the Benefits?. (n.d.). Retrieved 

December 3, 2018, from https://www.marutitech.com/recommendation-engine-benefits/ 
5. Carleton College. (n.d.). Recommender Systems. Retrieved December 3, 2018, from 

http://www.cs.carleton.edu/cs_comps/0607/recommend/recommender/collaborativefilteri
ng.html 

22 



 

Appendices 

1. 

 

Appendix 1: Scatterplot of number of folds vs common ratings for threshold = 50 
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Appendix 2: Scatterplot of number of folds vs common ratings for threshold = 100 
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3.

 

 

Appendix 3: Scatterplot of number of folds vs common ratings for threshold = 150 

 

 

 

 

 

 

25 



 

4. 

  

 

Appendix 4: Graph of threshold vs accuracy 
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5.  

 

Appendix 5: Raw data for performance of Link Rating at each Threshold 
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6. python code for entire project 
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